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This Technical Supplement is associated with the article “Portfolio Fron-
tiers with Restrictions to Tracking Error Volatility and Value at Risk”, sub-
mitted to the Journal of Banking and Finance. The paper introduces a new
portfolio frontier, the Fixed VaR-TEV Frontier (FVTF). In doing so, the
more general setup is presented in section 4. Specifically, a scenario analysis
is conducted under the following assumptions:

1. ∆1 > 0: the horizontal axis of the CTF has a positive slope in (σ2P , µP )
space,

2. zθ >
√
d: the confidence level of the managers is high,

3. T0 < TH : the CTF and the MVF do not intersect.

The scope of this Technical Supplement is to discuss all the other scenar-
ios regarding the interactions between portfolio frontiers when restrictions
upon TEV and VaR are jointly imposed.

1 Horizontal axis of the ellipse with positive slope,
high confidence level

1.1 One contact between the MVF and the CTF

In this scenario ∆1 > 0 and zθ >
√
d are kept, while T0 = TH is imposed

to determine a unique intersection between the MVF and the CTF. The
role of tangency portfolio H ≡ (σ2C + ∆2

1/d, µB) is crucial in this analysis
because it might also occur that the CVF is tangent to the MVF in H: this
is a special case in which the FVTF is given by portfolio M ≡ H ≡ K,
the minimum bound in Figure 3 (b) and the medium bound in Figure 3
(d) become the same VaR restriction and the strong bound in Figure 3 (c)
cannot be imposed because VM = VK . When M ≡ H ≡ K, the slope of
CVF is

zHθ =

√
d+

d2σ2C
∆2

1

, (T-1)
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where zHθ >
√
d by definition and

z∗θ > zHθ . (T-2)

Proof of equation (T-1)

Given M ≡ (σ2
C+dσ2

C/(z
2
θ−d), µC+dσC/

√
z2θ − d) and H ≡ (σ2

C+∆2
1/d, µB), if M ≡ H,

it follows that

µC +
dσC√
z2θ − d

= µB ⇒
√
z2θ − d =

dσC
∆1

.

Given that d > 0, σC > 0, ∆1 > 0 and z2θ − d > 0, by definition, the solution is

zHθ =

 
d+

d2σ2
C

∆2
1

.

Moreover, the relationship zHθ >
√
d is straighforward:

zHθ =
√
d

 
∆2

1 − dσ2
C

∆2
1

Proof of equation (T-2)

From equations (19) and (T-1) it follows that

d

2∆1
(σ1 + σ2) >

 
d+

d2σ2
C

∆2
1

therefore

σ1 + σ2

2
>

…
σ2
C +

∆2
1

d
= σH .

Given that portfolio H lies on the Mean-Variance Frontier, it surely has a lower risk than
the average of risks in portfolios J1 and J2, and this completes the proof.

All the other scenarios with V0 > VK = VH = VM remain identical to
those illustrated in Figure 3. Furthermore, when zθ = zHθ , equation (T-2)
indicates that V̂ = V2.

When zθ 6= zHθ , and therefore M 6= H 6= K, two different scenarios could
arise: if

√
d < zθ < zHθ , it follows that µB < µK < µM while, if zθ > zHθ ,

it follows that µM < µK < µB, as shown in Figure T-1. In both cases,
VM < VK < VH and minimum, strong and medium bounds exist.

1.2 Two contacts between the MVF and the CTF

When T0 > TH , the TEV constraint is feeble and the CTF intersects the
MVF in two distinct portfolios, thus forming the arc Ḣ1H2 whose length
augments when Ψ > 0 in equation (5) increases (see Palomba, 2008); in this

context, portfolio H ∈ Ḣ1H2 by definition, µH2 < µB < µH1 and the FVTF
is the same as defined in the previous sections. However, depending on zθ,
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Figure T-1: ∆1 > 0, high confidence level, T0 = TH . All Figures are plotted
with the CVF passing through portfolio M

(a) zθ = zHθ

(b)
√
d < zθ < zHθ (c) zθ > zHθ

1

Ψ and V0, each of the following relationships may occur: K̇1K2∩Ḣ1H2 = ∅,
K̇1K2 ∩ Ḣ1H2 6= ∅, K̇1K2 ⊂ Ḣ1H2 and Ḣ1H2 ⊂ K̇1K2.

In practical situations, an interesting scenario emerges when the con-
dition M ∈ Ḣ1H2 holds: in such a situation, the minimum VaR bound
V0 = VM is sufficient for obtaining a portfolio which satisfies both TEV and
VaR restrictions. Conversely, when M /∈ Ḣ1H2, the expected return of the
tangency portfolio M could be greater than that of portfolio H1 or less than
that of portfolio H2: in the former case, M lies on the MVF efficient set, to
the right of H1, where the tangency can only be reached for slopes zθ that
are close to the MVF asymptotic slope

√
d. In the latter case, the tangency

may only occur when Ψ > 0 is sufficiently small to guarantee the condition
µC < µM < µH2 .

2 Low confidence level

From the analytical perspective, when a low confidence level (zθ ≤
√
d)

applies, the CVF cannot be tangent to the two hyperbolic frontiers MVF
and MTF in (σP , µP ) space. The whole analysis is summarised by Figure
T-2, in which the condition T0 < TH is adopted for simplicity.
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(a) strong bound: as clearly shown in Alexander & Baptista (2008), an
intersection always exists between the straight line CVF and the frontiers
MVF and MTF (portfolios M and R).1 When V0 < VK , asset managers
have to make a choice between VaR and TEV because it is impossible to
obtain V0 and T0 at the same time.

(b) medium bound: in this case V0 = VK and the FVTF is given by K,
which is the tangency portfolio between the CVF and the CTF: portfolio
K represents the sole position at which manager can satisfy both VaR and
TEV restrictions.

(c) intermediate bound: when VK < V0 < V1 the CVF intersects the

MTF outside the CTF, thus the FVTF is composed of K1K2 and K̇1K2,
where K1 and K2 are the contact portfolios belonging to both the CVF and
the ellipse.

(d) maximum bound: “maximum” because it corresponds to the more
stringent VaR restriction at which the FVTF has a portfolio in common
with MTF: specifically, the bound V0 = V1 implies that the CVF passes
through portfolio R ≡ J1, thus FVTF is simply provided by the segment
K2J1 and arc K̆2J1.

(e) large bound: in such a situation V1 < V0 < V2, where V2 is defined
as the VaR restriction in portfolio J2; the FVTF is generally composed by
arcs K̆2J1 and R̄J1 and segment K2R that belongs to he straight line CVF.
Portfolio R is the intersection between the MTF and the CVF.

(f) larger bound: when V0 = V2, the straight line CVF passes through
portfolio J2 and the portfolios composing the FVTF corresponds to arcs
J̆1J2 belonging to both the MTF and the CTF (to the left of MTF).

(g) no bound: when V0 > V2, the VaR constraint is uneffective and the
FVTF is as described in the larger bound scenario.

When T0 ≥ TH , all the above scenarios remain substantially unaltered
and the analysis could therefore be extended to situations in which the MVF
and the CTF intersect.

1The slope zθ =
√
d represents the only exception: Alexander & Baptista (2008) show

that when V0 ≤ −µC , the CVF does not intersect the MVF. Moreover, when −µC < V0 ≤
−µC +

√
dδB , the CVF only intersects the MVF: in this case, the contact portfolio R does

not exist.
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3 Horizontal axis of the ellipse with non positive
slope

When ∆1 < 0, the horizontal axis of the ellipse CTF has a negative slope
in (σ2P , µP ) space, while it has zero slope when µB = µC . Under these
assumptions, the scenarios plotted in Figures 3 of the paper and T-2 are
substantially confirmed as are the discussions of the previous sections. In
such a situation, the relevant differences are:

(i) σ1 ≤ σ2 and µ1 > µ2, thus no feasible VaR constraints pass through
J1 ≡ (σ1, µ1) and J2 ≡ (σ2, µ2): in particular, the slope z∗θ in equation
(19) would be negative when µB < µC or infinite when the ellipse in
the (σ2P , µP ) space has a horizontal axis;

(ii) the relationship V1 < V2 applies for any 0.5 < θ < 1;

(iii) scenarios similar to those documented in Figure T-1 are not available.
Portfolio H lies on the inefficient arc of the MVF, thus it can not
coincide with the tangency portfolio M .

4 An empirical example

This section presents the same empirical analysis that has been conducted
in section 5 of the paper. All the results are shown in Table T-1. Here, the
principal remarks are:

• the DJ Eurostoxx 50 index is the benchmark portfolio,

• ∆1 < 0,

• the above condition determines the slopes z∗θ and zHθ cannot be calcu-
lated,

• µR /∈ [µ2, µ1], rendering the benchmark extreme (TR = 80.674).
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