PhD in Economics 1st year Econometrics test (2018-07-09 — resit)

(a)	If A and B are positive is also positive definite	definite square matrices of th	he same dimension, then $A - B$
	True ()	False ()	Not necessarily (
(b)	If X and Y are two ran	ndom variables and $E(X) = 0$	$0, \text{ then } \operatorname{Cov}(X, Y) = E(X \cdot Y).$
	True ()	False ()	Not necessarily (
(c)	If $X_n \xrightarrow{p} 0.5$, then $\ln(x_n)$ True \bigcirc	$\begin{array}{c} X_n) - \ln(1 - X_n) \xrightarrow{\mathbf{p}} 1. \\ \text{False} \bigcirc \end{array}$	Not necessarily (
(d)	$ \begin{array}{c} & \\ If \sqrt{n}(X_n - 0.5) \xrightarrow{d} N \\ True & \bigcirc \end{array} $	$V(0, 0.25)$, then $\sqrt{n} [\ln(X_n) - $ False \bigcirc	$\ln(1 - X_n)] \xrightarrow{d} N(0, 4).$ Not necessarily (
(e)	You have a sample of $V(X) = \mu$; consider th and V is the sample va	<i>n</i> iid realisations of a rando a statistic $\hat{\mu} = \sqrt{\bar{X} \cdot V}$, wher ariance. Then, $\hat{\mu}$ is a consiste	om variable X, with $E(X) =$ re \overline{X} is the sample mean of x_i nt estimator of μ .

2. You are reading a paper about the impact of attending (at least) a training course in the last 12 months on the probability of being employed. The author of the paper estimated a linear probability model (LPM) where the dependent variable is a dummy indicator equal to 1 if the individual is employed at the moment of the interview and 0 otherwise (*emp*). The regressor of primary interest is also a dummy indicator, equal to 1 if the individual attended (at least) a training course in the 12 months before the interview and 0 otherwise (*tr*). The estimated equation is therefore

$$emp_i = \delta \cdot tr_i + \mathbf{x}_i \boldsymbol{\beta} + u_i, \tag{1}$$

where u_i is the error term and \mathbf{x}_i are further individual characteristics.

Table 1 reports descriptive statistics of the dependent variable, the training indicator and further individual characteristics used in the analysis.

Table I. Summary statistic	o or one	variables a	loca III ollo	anaiyon
Variable	Mean	Std. Dev.	Minimum	Maximum
Employment status	0.6921	0.4616	0	1
Training indicator	0.0666	0.2493	0	1
Female	0.5309	0.4991	0	1
Age	43.498	10.047	26	64
Primary education	0.0872	0.2821	0	1
Secondary education	0.2084	0.4062	0	1
Tertiary education	0.7045	0.4563	0	1
Presence of kids younger than 12	0.3539	0.4782	0	1
Observation		3	3,348	

Table 1: Summary statistics of the variables used in the analysis

The estimation results of Equation (1) are reported in Table 2.

	Coefficient		Standard error ^(a)
Training indicator	0.1793	***	0.0055
Female	-0.2044	***	0.0044
Age	0.0644	***	0.0018
Age squared	-0.0009	***	0.0000
Education - Reference: Primary ed	lucation		
Secondary education	-0.0868	***	0.0086
Tertiary education	-0.0587	***	0.0075
Presence of kids younger than 12	-0.1207	***	0.0051
Constant	-0.0923	**	0.0399
Observations		33,34	8
R^2		0.211	8
F(7, 33340)		1,772.2	26

Table 2: Estimation results of employment equation

Notes: * Significant at 10%; ** significant at 5%; *** significant at 1%. $^{\rm (a)}$ Standard errors are robust to heteroskedasticity.

After reading Table 2 answer the following questions:

- (a) What is the marginal effect of attending (at least) a training course on the probability of being employed?
- (b) Compute the t-statistic for the test of significance of the estimated parameter of the training indicator.
- (c) Why does the author of this paper computed standard errors robust to heteroskedasticity? Would you have done it as well? Motivate your answer.
- (d) What is the marginal effect of one more year of age on the probability of being employed?

(e) Why is the indicator for primary education omitted from the set of regressors included in the model specification?

The paper also presents a second estimated employment equation. The equation is similar to the previous one, with the only difference that there is one more regressor, which is the interaction between the training indicator and the female indicator. The estimation results are presented in Table 3.

Coefficient Standard error Training indicator 0.0063 0.0935*** Training indicator*Female 0.18410.0103*** Female -0.21670.0047*** Age 0.06410.0018Age squared -0.00090.0000Education - Reference: Primary education *** 0.0086 Secondary education -0.0851*** Tertiary education 0.0075-0.0570Presence of kids younger than 12 *** 0.0051-0.1190Constant -0.0807** 0.0400 Observations 33.348 R^2 0.2142 F(8, 33339)1,596.84

Table 3: Estimation results of employment equation with gen-
der heteroegenous effect of training

Notes: * Significant at 10%; ** significant at 5%; *** significant at 1%. $^{\rm (a)}$ Standard errors are robust to heteroskedasticity.

After reading Table 3 answer the following questions:

- (f) Is the effect of training significantly different between males and females?
- (g) What is the marginal effect of training on the probability of employment for men? And for women?

Figure 1: Oil and gasoline prices

3. Figure 1 shows three weekly time series, from 06/06/1985 to 22/06/2018, defined as follows:

Definition
Natural logarithm of the spot price for U.S. Gulf Coast, regular gaso-
line (Source: eia.gov)
Natural logarithm of the spot price for West Texas Intermediate crude
oil price (Source: eia.gov)
gas-oil

Economic theory would suggest that, since crude oil is by far the main component of the cost of producing gasoline, the long-run elasticity of the price of gasoline with respect to the price of oil should be 1.

Annex 1 contains a gretl script performing various tests and estimating procedures on these data, together with the unedited output from the program. Write **in no more than one page** the main conclusions you are able to draw from the output (and please please please, write legibly); if you don't comply with the space limitation, you will get 0 points, even if what you write is worth the Nobel Prize.

Annex 1

Gretl script file

```
# static regression
ols gas const oil
# take differences
d_oil = diff(oil)
d_gas = diff(gas)
# ecm model
scalar p = 6
ols d_gas const d_gas(-1 to -p) d_oil(0 to -p) gas(-1) oil(-1)
# Godfrey test
modtest 13 -a --quiet
# unit root tests
adf 13 oil --c --test-down=BIC
adf 13 gas --c --test-down=BIC
adf 13 markup --c --test-down=BIC
# lag selection
var 13 oil gas --lagselect
p = iminc($test[,2]) # use BIC
# Johansen test
coint2 p gas oil
# VECM
vecm p 1 gas oil
restrict
   b1 + b2 = 0
end restrict
```

Output

Model 1: OLS, using observations 1986-06-06:2018-06-22 (T = 1673) Dependent variable: gas

	coefficient	std.	error	t-ratio	p-value	
const	-3.53383	0.01	30809	-270.2	0.0000	***
oil	0.989228	0.00	361230	273.8	0.0000	***
Mean dependent Sum squared re R-squared F(1, 1671)	t var -0.01 esid 15.74 0.973 7499	1093 4986 3204 3.80	S.D. de S.E. of Adjuste P-value	ependent v f regressi ed R-squar e(F)	var 0.65 ion 0.09 red 0.97 0.00	7400 7085 8191 0000
Log-likelihood Schwarz criter	1 1528 rion -3042	.842 .839	Akaike Hannan-	criterior -Quinn	n -3053 -3049	.684 .666
rho	0.91	1448	Durbin-	-Watson	0.17	6628

Model 2: OLS, using observations 1986-07-11:2018-06-22 (T = 1668) Dependent variable: d_{gas}

	coefficient	std. error	t-ratio	p-value	
const	-0.335603	0.0377083	-8.900	1.43e-18	***
d_gas_1	0.146425	0.0245458	5.965	2.98e-09	***
d_gas_2	-0.0733443	0.0248388	-2.953	0.0032	***
d_gas_3	0.103174	0.0245671	4.200	2.82e-05	***
d_gas_4	0.0514291	0.0246190	2.089	0.0369	**
d_oil	0.754124	0.0226904	33.24	5.28e-186	***
d_oil_1	-0.0205386	0.0292229	-0.7028	0.4823	
d_oil_2	0.0688646	0.0293081	2.350	0.0189	**
d_oil_3	-0.0378244	0.0288432	-1.311	0.1899	
d_oil_4	-0.0990733	0.0288769	-3.431	0.0006	***
gas_1	-0.0954441	0.0105602	-9.038	4.33e-19	***
oil_1	0.0939659	0.0105511	8.906	1.36e-18	***
				0.0504	~ 4
lean depend	ent var ().()()	U989 S.D.C	lependent va	ar 0.0504	24

nean dependent var	0.000505	D.D. dependent var	0.000424
Sum squared resid	2.375611	S.E. of regression	0.037875
R-squared	0.439511	Adjusted R-squared	0.435788
F(11, 1656)	118.0511	P-value(F)	4.3e-199
Log-likelihood	3099.351	Akaike criterion	-6174.703
Schwarz criterion	-6109.670	Hannan-Quinn	-6150.605
rho	0.001530	Durbin-Watson	1.996874

Excluding the constant, p-value was highest for variable 12 (d_oil_1)

Breusch-Godfrey test for autocorrelation up to order 13

Test statistic: LMF = 1.361811, with p-value = P(F(13, 1643) > 1.36181) = 0.171

Alternative statistic: $TR^2 = 17.781324$, with p-value = P(Chi-square(13) > 17.7813) = 0.166

Ljung-Box Q' = 12.9229, with p-value = P(Chi-square(13) > 12.9229) = 0.454

Augmented Dickey-Fuller test for oil testing down from 13 lags, criterion BIC sample size 1669

```
unit-root null hypothesis: a = 1
  test with constant
  including 3 lags of (1-L)oil
 model: (1-L)y = b0 + (a-1)*y(-1) + \ldots + e
  estimated value of (a - 1): -0.00267861
  test statistic: tau_c(1) = -1.7302
  asymptotic p-value 0.416
  1st-order autocorrelation coeff. for e: -0.003
  lagged differences: F(3, 1664) = 17.063 [0.0000]
Augmented Dickey-Fuller test for gas
testing down from 13 lags, criterion BIC
sample size 1669
unit-root null hypothesis: a = 1
  test with constant
  including 3 lags of (1-L)gas
 model: (1-L)y = b0 + (a-1)*y(-1) + \dots + e
  estimated value of (a - 1): -0.00393731
  test statistic: tau_c(1) = -2.13623
  asymptotic p-value 0.2305
  1st-order autocorrelation coeff. for e: 0.005
  lagged differences: F(3, 1664) = 25.501 [0.0000]
Augmented Dickey-Fuller test for markup
testing down from 13 lags, criterion BIC
sample size 1668
unit-root null hypothesis: a = 1
  test with constant
  including 4 lags of (1-L)markup
 model: (1-L)y = b0 + (a-1)*y(-1) + \ldots + e
  estimated value of (a - 1): -0.103058
  test statistic: tau_c(1) = -9.49483
  asymptotic p-value 1.349e-17
  1st-order autocorrelation coeff. for e: 0.003
  lagged differences: F(4, 1662) = 15.387 [0.0000]
```

VAR system, maximum lag order 13

The asterisks below indicate the best (that is, minimized) values of the respective information criteria, AIC = Akaike criterion, BIC = Schwarz Bayesian criterion and HQC = Hannan-Quinn criterion.

lags	loglik	p(LR)	AIC	BIC	HQC
1	5978.33476		-7.195584	-7.176013	-7.188330
2	6014.30278	0.00000	-7.234100	-7.201482	-7.222010
З	6030.09295	0.00000	-7.248305	-7.202640	-7.231379
4	6046.36271	0.00000	-7.263088	-7.204375*	-7.241326
5	6056.61223	0.00040	-7.270617	-7.198858	-7.244020*
6	6058.40761	0.46421	-7.267961	-7.183154	-7.236528
7	6060.97515	0.27372	-7.266235	-7.168381	-7.229966
8	6064.49229	0.13409	-7.265653	-7.154752	-7.224548
9	6073.26383	0.00152	-7.271402	-7.147454	-7.225461
10	6077.79432	0.05959	-7.272041*	-7.135046	-7.221264
11	6078.28398	0.91292	-7.267812	-7.117770	-7.212199
12	6083.75084	0.02732	-7.269579	-7.106490	-7.209131
13	6084.44908	0.84481	-7.265601	-7.089465	-7.200317

Johansen test:

```
Number of equations = 2
Lag order = 4
Estimation period: 1986-07-04 - 2018-06-22 (T = 1669)
Case 3: Unrestricted constant
Log-likelihood = 10793.3 (including constant term: 6056.9)
Rank Eigenvalue Trace test p-value Lmax test p-value
                 84.795 [0.0000]
   0 0.047752
                                       81.664 [0.0000]
   1 0.0018739
                   3.1305 [0.0768]
                                       3.1305 [0.0768]
Corrected for sample size (df = 1660)
Rank Trace test p-value
   0
        84.795 [0.0000]
        3.1305 [0.0767]
   1
             0.047752
                         0.0018739
eigenvalue
beta (cointegrating vectors)
              -11.082
gas
                        -0.010940
oil
               10.967
                            1.5362
alpha (adjustment vectors)
gas
            0.0064122
                        -0.0017113
            -0.0023742
                       -0.0017179
oil
renormalized beta
              1.0000
                       -0.0071209
gas
             -0.98959
                           1.0000
oil
renormalized alpha
            -0.071061
                        -0.0026290
gas
oil
             0.026311
                       -0.0026391
long-run matrix (alpha * beta')
                                oil
                  gas
             -0.071043
gas
                          0.067693
oil
             0.026330
                         -0.028677
VECM system, lag order 4
Maximum likelihood estimates, observations 1986-07-04-2018-06-22 (T = 1669)
Cointegration rank = 1
Case 3: Unrestricted constant
beta (cointegrating vectors, standard errors in parentheses)
          1.0000
gas
         (0.0000)
        -0.98959
oil
       (0.015082)
alpha (adjustment vectors)
gas
       -0.071061
oil
       0.026311
Log-likelihood = 6055.337
Determinant of covariance matrix = 2.4193787e-06
AIC = -7.2347
BIC = -7.1762
HQC = -7.2130
Equation 1: d_gas
```

	coeffic	ient 	std.	erroi	r t 	-ratio		value	
const	-0.2505	69	0.046	59438	-	-5.338	1.	07e-07	***
d_gas_1	0.1762	05	0.031	16676		5.564	З.	06e-08	***
d_gas_2	-0.0199	701	0.031	L5120	-	-0.6337	0.	5263	
d_gas_3	0.1226	51	0.031	15490		3.888	0.	0001	***
d_oil_1	0.0531	366	0.037	75437		1.415	0.	1572	
d_oil_2	-0.0247	674	0.036	68505	-	-0.6721	0.	5016	
d_oil_3	0.0069	0781	0.037	71647		0.1859	0.	8526	
EC1	-0.0710	615	0.013	32732	-	-5.354	9.	82e-08	***
Mean depende	nt var	0.0009	953	S.D.	depe	endent va	ar	0.0504	130
Sum squared	resid	3.9766	572	S.E.	of r	regression	on	0.0489	930
R-squared		0.062	571	Adjus	sted	R-square	ed	0.0586	520
rho		0.004	186	Durbi	in-Wa	atson		1.9910	006

Equation 2: d_oil

	coeffic	ient	std.	erro	r t-ratio	p-v	alue	
const	0.0938	3062	0.03	95033	2.375	0.0	177	**
d_gas_1	0.0419	9184	0.02	266483	1.573	0.1	159	
d_gas_2	0.0853	3092	0.02	265174	3.217	0.0	013	***
d_gas_3	0.0310	0184	0.02	265485	1.168	0.2	428	
d_oil_1	0.1001	.91	0.03	815931	3.171	0.0	015	***
d_oil_2	-0.1484	L00	0.03	810097	-4.786	1.8	6e-06	***
d_oil_3	0.0633	8167	0.03	812741	2.025	0.0	431	**
EC1	0.0263	8114	0.01	11694	2.356	0.0	186	**
Mean depende	ent var	0.000)951	S.D.	dependent	var	0.0420)77
Sum squared	resid	2.815	5980	S.E.	of regress	sion	0.0411	75
R-squared		0.046	3449	Adju	sted R-squa	ared	0.0424	130

1.995420

rho 0.000711 Durbin-Watson

Cross-equation covariance matrix:

	gas	oil
gas	0.0023827	0.0012652
oil	0.0012652	0.0016872

determinant = 2.41938e-06

Restriction: b[1] + b[2] = 0

Test of restrictions on cointegrating relations

eigenvalue 1 = 0.0474912

Unrestricted loglikelihood (lu) = 6055.337 Restricted loglikelihood (lr) = 6055.1083 2 * (lu - lr) = 0.457361 P(Chi-square(1) > 0.457361) = 0.49886