PhD in Economics (17th Cycle) Econometrics test (2017-05-08)

(a)			nsonal vectors y a egression of x on y		of the regression of y o	n x
	TRUE	0	FALSE	0	CAN'T SAY	(
(b)	tion with	$pdf p(x_i) =$	$= \exp\{-\lambda\}\lambda^{x_i}/x_i!;$	the sample	n drawn from a distri variance is the maxim	
	TRUE		or the unknown p FALSE	\bigcirc	CAN'T SAY	(
(c)			nodel $y_i = \beta x_i + \varepsilon_i \perp x_i, z_i$. Then $\hat{\beta}$ FALSE		$= \alpha z_i + \varepsilon_i, V(x_i) < \beta.$ CAN'T SAY	∞, (
	$\frac{\text{COV}(x_i, z_i)}{\text{TRUE}}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	$(z_i) > 0$, and $(z_i) > 0$, and $(z_i) > 0$, the sample s	$arepsilon_i \perp x_i, z_i.$ Then \hat{eta} FALSE selection model y_i $arepsilon_i, u_i x_i$ are standa	$\begin{array}{c} P_{OLS} \xrightarrow{\mathbf{p}} \theta > \\ \bigcirc \\ \end{array}$ $= \alpha + \beta x_i + \end{array}$	β .	d

2. Consider a sample of N individuals. Assume that y is the $N \times 1$ binary dependent variable and $d1, d2, \ldots, dM$ are the $N \times 1$ dummy regressors for exhaustive and exclusive categories, meaning that each person in the population falls into one and only one category (if for individual $i dk_i = 1$, all the other M - 1 regressors of individual i are equal to 0). Consider the linear regression, without the intercept,

$$\mathbf{y}$$
 on \mathbf{X} , with $\mathbf{X} = [d1 \ d2 \ \dots \ dM]$.

Prove that:

- (a) The matrix $\mathbf{X}'\mathbf{X}$ is diagonal.
- (b) The OLS estimates of the coefficients are all in the [0, 1] interval ($0 \le \hat{\beta}_j \le 1$, for $j = 1 \dots M$).
- (c) The fitted values from the OLS regression are in the [0, 1] interval for all individuals ($0 \le \hat{y}_i \le 1$, for i = 1 ... N)
- 3. Figure 1 depicts four quarterly time series, observed in the 1999:1 2016:4 interval. The description of the series is as follows:

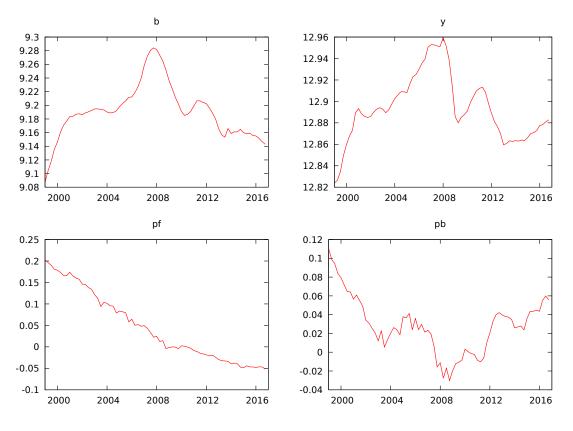


Figure 1: The data

Name	Description
b_t	Real expenditure in alcoholic beverages, tobacco and narcotics
y_t	Real GDP
pb_t	Price index for alcoholic beverages, tobacco and narcotics
pf_t	Price index for recreation and culture

	Const	ant only	With trend		
Variable	Test	p-value	Test	p-value	
b	0.153	> 0.1	0.153	0.047	
у	0.147	> 0.1	0.145	0.057	
pf	0.533	0.039	0.155	0.046	
pb	0.218	> 0.1	0.156	0.046	

Tabl	le 1:	KPSS	tests

All variables are in logs and seasonally adjusted. KPSS tests were run on all four variables, with the results shown in Table 1. Estimation of an ECM model yielded the results shown in Table 2. A restricted version of the model was also estimated, using the variables $w_t = b_t - y_t$ and $r_t = pb_t - pf_t$. The results are shown in Table 3.

OLS,	T = 70)					
	Depend		dent variable: Δb_t			
	Coefficient	Std. Erro	or <i>t</i> -ratio	p-value		
const	-0.7238	0.328	6 -2.2025	0.0314		
Δy_t	0.2068	0.082	4 2.5108	0.0147		
b_{t-1}	-0.1374	0.038	5 -3.5714	0.0007		
pb_{t-1}	-0.0175	0.034	8 - 0.5027	0.6170		
pf_{t-1}	0.0087	0.008	0 1.0819	0.2835		
y_{t-1}	0.1541	0.041	8 3.6895	0.0005		
Δb_{t-1}	0.3711	0.112	3 3.3035	0.0016		
Δb_{t-2}	0.2103	0.106	7 1.9701	0.0533		
Mean depender	t var 0.00	00550 S.	D. depender	nt var (0.007684	
Sum squared re	sid 0.00	00975 S.	E. of regressi	ion (.003966	
R^2	0.70	60619 A	djusted R^2	C	.733592	
F(7, 62)	28.	14299 P-	value(F)	5	5.39e–17	
Log-likelihood	292		kaike criterio	on —5	68.0407	
Schwarz criteric	on -550	0.0528 H	annan–Quin	n —5	60.8957	

LM test for autocorrelation up to order 4 – Test statistic: LMF = 0.404753, *p*-value = 0.804461

Table 2: Unrestricted ECM model

- (a) Comment on the unit-root tests shown in Table 1.
- (b) Compute the long-run multipliers with respect to y_t , pb_t and pf_t for the unrestricted model (Table 2) and comment on the economic meaning of their sign and magnitude.
- (c) Perform a test for the validity of the restrictions implied by the restricted version of the model.
- (d) Suggest an economic interpretation for the above restrictions and compute the long-run multipliers with respect to y_t , pb_t and pf_t for the restricted model (Table 3).
- (e) Suggest alternative approaches to the estimation of the model which exploit the possibility of cointegration.

OLS, using observations 1999:3–2016:4 ($T = 70$)						
	Depend		dent variable: Δb_t			
	Coefficient	Std. E	Error	t-ratio	p-value	<u>}</u>
const	-0.4661	0.	1267	-3.6794	0.0005	5
Δy_t	0.1781	0.	0787	2.2619	0.0271	
r_{t-1}	-0.0098	0.	0079	-1.2459	0.2173	6
w_{t-1}	-0.1258	0.	0342	-3.6764	0.0005	i
Δb_{t-1}	0.3855	0.	1101	3.5026	0.0008	
Δb_{t-2}	0.2031	0.	1000	2.0306	0.0465	i
Mean depender	nt var 0.0	00550	S.D.	dependent	t var	0.007684
Sum squared re	sid 0.0)00999	S.E.	of regressio	on	0.003952
R^2	0.7	754695	Adju	isted R^2		0.735531
F(5, 64)	39	.38004	P-va	lue(F)		2.84e-18
Log-likelihood	29	1.1649	Akai	ike criterio	n –	570.3298
Schwarz criterio	on -55	6.8388	Han	nan–Quinr	n –	564.9710

LM test for autocorrelation up to order 4 – Test statistic: LMF = 0.548547, p-value = 0.700763

Table 3: Restricted ECM model