PhD in Economics (14th Cycle) Econometrics test (2013-10-11)

Name: _

- 1. Say if the following statements are unambiguously true (TRUE), unambiguously false (FALSE) or impossible to classify the way they are stated (CAN'T SAY). Write the motivations to your answers **only** in the space provided. A "CAN'T SAY" answer with no motivations will be considered wrong.
 - (a) If you estimate a model by maximum likelihood, the Hessian is a valid estimator of the covariance matrix of the parameters.

	TRUE	0	FALSE	0	CAN'T SAY	0
(b)	If we perfo accept hyp is useless, TRUE	orm a test by toothesis <i>B</i> , the since it is log	which we accept hy en carrying out a fr ically impossible th FALSE	pothesis A and a urther test for the at the joint hypo	nother test by which e joint hypothesis A thesis is false. CAN'T SAY	ch we $A \wedge B$
(c)		X, then $\lim_{n-1} C$	$P_{\to\infty} P[X_n \in (0,1)] =$ FALSE	$P[X \in (0,1)].$	CAN'T SAY	 C
(d)	The OLS en TRUE	stimator is a	Maximum Likeliho FALSE	od estimator. O	CAN'T SAY	C
(e)	The OLS e TRUE	stimator is a	GMM estimator. FALSE	0	CAN'T SAY	C

2. You have a dataset on arrests in the year 1986 and other information on 2,725 men in California. Each man is already known to the police as already arrested at least once prior to 1986. Let arr_i be a binary variable equal to 1 if individual *i* was arrested during 1986 and 0 if not arrested in 1986. The variable $white_i$ is a dummy variable equal to 1 if individual *i* is white. The variable $pcnv_i$ is the fraction of arrests prior to 1986 that led to conviction, $durat_i$ is the recent unemployment duration in months prior to 1986, and inc_i is the 1986 legal income (in \$1,000). Define $\mathbf{x}_i \equiv [white_i \ pcnv_i \ durat_i \ inc_i]$ Suppose that arr_i follows a logit model

$$\Pr(arr_i = 1 | \mathbf{x}_i) = \frac{\exp(\alpha + \mathbf{x}_i \boldsymbol{\beta})}{[1 + \exp(\alpha + \mathbf{x}_i \boldsymbol{\beta})]},\tag{1}$$

where α is the constant. Table **??** reports the summary statistics of the dependent variable and of the independent variables. Table **??** displays the maximum likelihood estimation results of parameters the logit model in Eq. (**??**). Finally, Table **??** displays the 5 by 5 variance-covariance matrix of the estimated parameters.

Variable	observations	mean	std. dev.	min.	max.
arr	2725	.277064	.447631	0	1.0
white	2725	.621284	.485156	0	1.0
pcnv	2725	.357787	.395192	0	1.0
durat	2725	2.251376	4.607063	0	25.0
inc	2725	5.496705	6.662721	0	54.1

Table 1: Summary statistics of variables

Table 2: Estimation results of the logit model for being arrested in 1986

Logit, using observations 1-2725 Dependent variable: arr Standard errors based on Hessian

	coeffi	cient	std.	error	Z	p-value	
const	-0.010	 6850	0.09	17962	-0.1164	0.9073	_
white	-0.581	706	0.08	98887	-6.471	9.71e-01	1 ***
pcnv	-0.970	731	0.12	4498	-7.797	6.33e-01	5 ***
durat	0.019	0081	0.00	940882	2.020	0.0434	**
inc	-0.072	2517	0.00	897769	-8.048	8.42e-01	6 ***
Mean depen	dent var	0.277	064	S.D. de	ependent va	ar 0.447	631
McFadden R	-squared	?????	, ; ; ;	Adjuste	ed R-square	ed 0.066	102
Log-likelihood -14		-1496.	880	Akaike	criterion	3003.	761
Schwarz cr	iterion	3033.	312	Hannan-	-Quinn	3014.	442

(a) At the bottom of Table **??** the McFadden Pseudo-R-squared is not reported. Write down the formula of the Pseudo-R-Squared and, then, numerically compute it.¹

¹Hint 1: exploit the connection between the fraction of individuals who are arrested in 1986 and the loglikelihood value of the logit model with the constant only; Hint 2: $\ln(0.277064) = -1.2835068; \ln(0.722936) = 0.32443458.$

Table 3: The variance-covariance matrix of the estimated parameters

	cons	white	pcnv	durat	inc
cons	 .00842655				
white	00427567	.00807997			
pcnv	00512757	.0002189	.01549963		
durat	00034955	00002105	.00002217	.00008853	
inc	00040186	00005257	.00010022	.00002842	.0000806

- (b) Compute the predicted probability of being arrested in 1986 of individual *i* who is white, with $pcnv_i = 0$, no previous unemployment, and no legal income. Using the delta method, compute also the standard error of this predicted probability.
- (c) Write down the analytical formulas to compute the partial effects at the average (PEA) for a continuous regressor **and** a binary regressor. Then, estimate the PEA of one more month spent in unemployment prior to 1986.
- 3. The Phillips Curve is a theoretical relationship between the inflation rate p_t and the unemployment rate u_t . In some of its versions, the equation

$$p_t = p_t^e + \beta (u_t - u_{t-1}), \tag{2}$$

where p_t^e is inflationary expectation at time *t* should be an adequate model for inflation dynamics. Under the assumption of a constant expected inflation rate, the dynamic model

$$p_{t} = \mu + \phi p_{t-1} + \beta_0 u_t + \beta_1 u_{t-1} + \varepsilon_t, \tag{3}$$

where $\varepsilon_t \sim WN(0, \sigma^2)$, has been estimated over a sample of monthly data ranging from 1980:1 to 2012:7; the results are in Table **??**.

Table 4: OLS, using observations 1980:01-2012:07 (T = 391)

Dependent variable: p

coeffi	cient	std.	error	t-ratio	p-value	9
const 0.108	750	0.050	09009	2.136	0.0333	**
p_1 0.574	425	0.041	10135	14.006	0.0000	* * *
u -0.080	381	0.072	24048	-1.110	0.2676	
u_1 0.081	738	0.072	25105	1.127	0.2603	
Mean dependent var Sum squared resid	0.2787 23.814	774 105	S.D. S.E.	dependent var of regressior	c 0.30)3455 48063
R-squared	0.3368	399	Adjus	sted R-squared	d 0.33	31759
F(3, 387)	65.540	046	P-val	Lue(F)	2.74	1e-34
Log-likelihood	-7.7115	535	Akaik	ke criterion	23.4	42307
Schwarz criterion	39.297	790	Hanna	an-Quinn	29.	71531
rho	0.0239	943	Durbi	in's h	0.80	06220

Breusch-Godfrey test statistic: TR^2=22.926589, p-value=0.000131 Ljung-Box test statistic: Q=11.1129, p-value=0.0253 The covariance matrix of the estimated parameters is

	0.0025909			
ŵ	-0.0004362	0.0016821		
v =	-0.0001260	-0.0001300	0.0052425	
	-0.0002342	0.0001242	-0.0052219	0.0052578

(a) Write the null hypothesis H_0 under which model (??) reduces to model (??).

	<i>H</i> ₀ :
	(Hint: The test-statistic returns 98.2045 and the related <i>p</i> -value is 0.0000.)
(b)	Which is the expected sign of β in model (??)?
	\bigcirc POSITIVE \bigcirc NEGATIVE \bigcirc ZERO
	Why?
(c)	Write the null hypothesis H_0 under which model (??) reduces to an AR(1) model.
	<i>H</i> ₀ :
(d)	Carry out the test
	Test: Distribution: Test stat.:
	Result: ACCEPT () REJECT ()
(e)	Fill the blanks with the estimated coefficient of the ECM form
	$\Delta p_t = \underline{\qquad} + \underline{\qquad} \Delta u_t + \underline{\qquad} [p_{t-1} - \underline{\qquad} u_{t-1}]$

(f) Using also the information arising from previous answers, provide some comments to the estimates contained in Table **??**.