## DOTTORATO DI RICERCA IN ECONOMIA POLITICA (XII CICLO) Econometrics test (28/11/2011)

| ()  | If x is a n ><br>TRUE              | × 1 column ve                   | ector, then the squa<br>FALSE | ore symmetric       | r matrix <i>xx'</i> has full ran<br>CAN'T SAY |
|-----|------------------------------------|---------------------------------|-------------------------------|---------------------|-----------------------------------------------|
| (b) | If $\varepsilon_t \sim WN$<br>TRUE | $\mathbb{N}(0,\Sigma)$ , the co | ovariance matrix Σ<br>FALSE   | is diagonal.<br>O   | CAN'T SAY                                     |
| (c) | The White<br>test.<br>TRUE         | test for heter                  | oskedasticity can b<br>FALSE  | e seen as a La<br>O | grange Multiplier (LM)<br>CAN'T SAY           |
|     | The param<br>TRUE                  |                                 | 0                             |                     | by the OLS method.<br>CAN'T SAY               |
| (d) |                                    |                                 |                               |                     |                                               |

2. All the production functions in a sample of N = 500 enterprises are given by the following Cobb-Douglas equation

$$Y_i = A L_i^{\alpha} K_i^{\beta},$$

in which we assume A = 1. The variable  $Y_i$  is the total amount of production by the *i*-th firm and the production factors are labour  $(L_i > 0)$  and capital  $(K_i > 0)$ . The total sample is split into two subsamples containing  $N_1 = 50$  large firms and  $N_2 = 450$  small- and medium-size firms. Other data are provided in the following Table.

| subsample                                                                   | n   | $\sum^n y_i^2$ | $\sum^n l_i^2$ | $\sum^n \kappa_i^2$ | $\sum^n l_i y_i$ | $\sum^n \kappa_i y_i$ | $\sum^{n} l_i \kappa_i$ |
|-----------------------------------------------------------------------------|-----|----------------|----------------|---------------------|------------------|-----------------------|-------------------------|
|                                                                             |     | i=1            | i=1            | i=1                 | i=1              | i=1                   | i=1                     |
| large                                                                       | 50  | 200000         | 80000          | 100000              | 64000            | 80000                 | 40000                   |
| SMEs                                                                        | 450 | 300900         | 50000          | 80000               | 33000            | 42000                 | 20000                   |
| $y_i = \ln Y_i, l_i = \ln L_i$ and $\kappa_i = \ln K_i$ for each <i>i</i> . |     |                |                |                     |                  |                       |                         |

The OLS estimates for the entire sample are  $\hat{\alpha} = 0.512$  and  $\hat{\beta} = 0.508$ , while the OLS estimates for the second subsample are  $\hat{\alpha}_1 = 0.5$ , and  $\hat{\beta}_1 = 0.4$ . The SSR for the whole sample is 28035.

- (a) Compute the OLS estimator of  $\alpha$  and  $\beta$  for the subsample 1.
- (b) Calculate a suitable test for the presence of a break between different categories of enterprises. The SSR in sample 1 is 8000, while the SSR in sample 2 is 17000.

| Test:   |        | Distribution: |        | Test stat.: |  |
|---------|--------|---------------|--------|-------------|--|
| Result: | ACCEPT | $\bigcirc$    | REJECT | $\bigcirc$  |  |

(c) Test the hypothesis of constant return to scale in subsample 2.

- 3. Let  $x_t$ ,  $y_t$  and  $w_t$  be the 1-year, 5-year, and 10-year US Treasury Constant Maturity rates, respectively. Their time path is depicted in Figure 1 and a few results are reported in Tables 1 and 2. A dummy variable crisis is set in 2008:12 to account for some relevant effects of the subprime crisis.
  - (a) Write *Model 2* in ECM form ( $d_t$  contains the constant, the trend and the dummy).

 $\Delta w = d_t + \_$ 

(b) Test, if possible, the restrictions imposed by *Model 1* to *Model 2*.
 ○ NO: it is not possible to carry out a test statistic (provide a motivation)

 $\bigcirc$  YES: it is possible (carry out the test)

| Test:   |        | Distribution: |        | Test stat.: |  |  |
|---------|--------|---------------|--------|-------------|--|--|
| Result: | ACCEPT | $\bigcirc$    | REJECT | $\bigcirc$  |  |  |

(c) Provide some comments on the estimates.

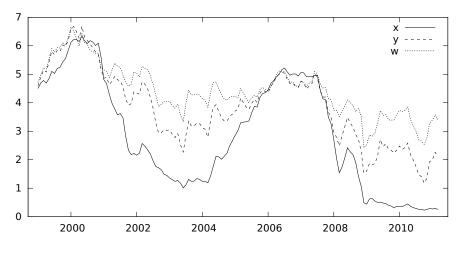



Figure 1: US rates

## Table 1: Model 1

OLS, using observations 1999:01-2011:03 (T = 147) Dependent variable: w

|                                                                                                                                                                                                                                              | coefficient                                                                 | std. error                                                    | t-ratio                                                                                          | p-value                                                |                                 |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------|--|--|
| time<br>crisis<br>x                                                                                                                                                                                                                          | 1.44620<br>-0.00049<br>-0.27283<br>-0.24464<br>0.99242                      | 0.00033<br>0.10264<br>0.01494                                 | -1.470<br>-2.658<br>-16.37                                                                       | 0.1439<br>0.0088<br>1.63e-34                           | ***                             |  |  |
| Sum squared<br>R-squared<br>F(4, 142)<br>Log-likeliho<br>Schwarz crit                                                                                                                                                                        | nt var 4.43<br>resid 1.42<br>0.98<br>2946<br>od 132.<br>erion -239.<br>0.80 | 6852 S.E.<br>8095 Adju<br>.362 P-va<br>0857 Akai<br>2193 Hann | dependent va<br>of regressic<br>sted R-square<br>lue(F)<br>ke criterion<br>an-Quinn<br>in-Watson | on 0.1002<br>ed 0.9877<br>1.7e-1<br>-254.17<br>-248.09 | 241<br>759<br>135<br>714<br>262 |  |  |
| <pre>Breusch-Godfrey test for autocorrelation up to order 4 Test statistic: LMF = 73.364391, p-value = P(F(4,138) &gt; 73.3644) = 3.32e-33 Alternative statistic: TR^2 = 99.982630, p-value = P(Chi-square(4) &gt; 99.9826) = 9.92e-21</pre> |                                                                             |                                                               |                                                                                                  |                                                        |                                 |  |  |
| Ljung-Box of order 4<br>Test statistic Q' = 188.83, p-value = P(Chi-square(4) > 188.83) = 9.46e-40                                                                                                                                           |                                                                             |                                                               |                                                                                                  |                                                        |                                 |  |  |
| Test for ARCH of order 4<br>Test statistic: LM = 42.1923, p-value = P(Chi-square(4) > 42.1923) = 1.52183e-08                                                                                                                                 |                                                                             |                                                               |                                                                                                  |                                                        |                                 |  |  |
| Test for normality of residuals:<br>x Jarque-Bera test = 0.347175, p-value 0.840644                                                                                                                                                          |                                                                             |                                                               |                                                                                                  |                                                        |                                 |  |  |
| Augmented Dickey-Fuller test for residuals<br>including 12 lags - sample size 134<br>Test with constant: tau_c(1) = -3.19336, asymptotic p-value 0.02041<br>Test with constant and trend: tau_ct(1) = -4.28773, asymptotic p-value 0.003225  |                                                                             |                                                               |                                                                                                  |                                                        |                                 |  |  |
| <pre>KPSS test for residuals (without trend) T = 147 - Lag truncation parameter = 5 Test statistic = 0.144621 (critical values: 0.349 [10%], 0.464 [5%], 0.737[1%])</pre>                                                                    |                                                                             |                                                               |                                                                                                  |                                                        |                                 |  |  |

## Table 2: Model 2

OLS, using observations 1999:01-2011:03 (T = 147) Dependent variable:  $\mathbf x$ 

|                                                                                                                                                                                                                                  | coefficient         | std. error                                     | t-ratio   |                    |            |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------------------------------|-----------|--------------------|------------|--|--|
|                                                                                                                                                                                                                                  | 0.22712             |                                                | 2.345     | 0.0204             |            |  |  |
|                                                                                                                                                                                                                                  | 0.00001             |                                                |           |                    |            |  |  |
|                                                                                                                                                                                                                                  | -0.46914            | 0.05599                                        | -8.379    | 5.26e-14           | * * *      |  |  |
| w_1                                                                                                                                                                                                                              | 0.82859<br>-0.28031 | 0.04622<br>0.03259                             | 17.93     | 5.75e-38           | * * *      |  |  |
| Х                                                                                                                                                                                                                                | -0.28031            | 0.03259                                        | -8.602    | 1.49e-14           | * * *      |  |  |
|                                                                                                                                                                                                                                  | 0.24014             |                                                |           |                    |            |  |  |
| У                                                                                                                                                                                                                                | 1.00289             | 0.02740                                        | 36.61     | 3.00e-73           | * * *      |  |  |
| y_1                                                                                                                                                                                                                              | -0.83420            | 0.05143                                        | -16.22    | 7.22e-34           | * * *      |  |  |
| Mean dependent var         4.432           Sum squared resid         0.390           R-squared         0.996           F(7, 139)         6078.           Log-likelihood         227.3           Schwarz criterion         -414.8 |                     | 249 S.E. of regressio<br>744 Adjusted R-square |           | n 0.052<br>d 0.996 | 986<br>580 |  |  |
| Log-likeliho                                                                                                                                                                                                                     | od 227.3            | 741 Akaike                                     | criterion | -438.7             | 481        |  |  |
|                                                                                                                                                                                                                                  |                     | 247 Hannan                                     |           |                    | 278        |  |  |
| rho                                                                                                                                                                                                                              | 0.076               | 166 Durbin                                     | ı's h     | 1.109              | 458        |  |  |
| Godfrey test for autocorrelation up to order 4<br>Test statistic: LMF = 0.935694, p-value = P(F(4,135) > 0.935694) = 0.445<br>Alternative statistic: TR^2 = 3.965524, p-value = P(Chi-square(4) > 3.96552) = 0.411               |                     |                                                |           |                    |            |  |  |
| Ljung-Box of order 4<br>Test statistic Q' = 3.41761, p-value = P(Chi-square(4) > 3.41761) = 0.491                                                                                                                                |                     |                                                |           |                    |            |  |  |
| Test for ARCH of order 4<br>Test statistic: LM = 6.71653, p-value = P(Chi-square(4) > 6.71653) = 0.151648                                                                                                                        |                     |                                                |           |                    |            |  |  |
| Test for normality of residuals:<br>Jarque-Bera test = 3.38441, p-value 0.184113                                                                                                                                                 |                     |                                                |           |                    |            |  |  |
| Dickey-Fuller test for residuals<br>sample size 146<br>Test with constant: tau_c(1) = -11.2196, p-value 2.334e-17<br>Test with constant and trend: tau_ct(1) = -11.1819, p-value 2.702e-16                                       |                     |                                                |           |                    |            |  |  |
| <pre>KPSS test for e2 (without trend) T = 147 - Lag truncation parameter = 5 Test statistic = 0.0890061 (critical values: 0.349[10%], 0.464[5%], 0.737[1%])</pre>                                                                |                     |                                                |           |                    |            |  |  |